Nanopores: The Passage of Homopolymeric RNA through Small Solid-State Nanopores (Small 15/2011)
نویسندگان
چکیده
منابع مشابه
The passage of homopolymeric RNA through small solid-state nanopores.
Solid-state nanopores are widely acknowledged as tools with which to study local structure in biological molecules. Individual molecules are forced through a nanopore, causing a characteristic change in an ionic current that depends on the molecules' local diameter and charge distribution. Here, the translocation measurements of long (~5-30 kilobases) single-stranded poly(U) and poly(A) molecul...
متن کاملDNA Translocations through Solid-State Plasmonic Nanopores
Nanopores enable label-free detection and analysis of single biomolecules. Here, we investigate DNA translocations through a novel type of plasmonic nanopore based on a gold bowtie nanoantenna with a solid-state nanopore at the plasmonic hot spot. Plasmonic excitation of the nanopore is found to influence both the sensor signal (nanopore ionic conductance blockade during DNA translocation) and ...
متن کاملNoise in solid-state nanopores.
We study ionic current fluctuations in solid-state nanopores over a wide frequency range and present a complete description of the noise characteristics. At low frequencies (f approximately < 100 Hz) we observe 1/f-type of noise. We analyze this low-frequency noise at different salt concentrations and find that the noise power remarkably scales linearly with the inverse number of charge carrier...
متن کاملChemically modified solid-state nanopores.
Nanopores are extremely sensitive single-molecule sensors. Recently, electron beams have been used to fabricate synthetic nanopores in thin solid-state membranes with subnanometer resolution. Here we report a new class of chemically modified nanopore sensors. We describe two approaches for monolayer coating of nanopores: (1) self-assembly from solution, in which nanopores approximately 10 nm di...
متن کاملSelective ion passage through functionalized graphene nanopores.
Biological ionic channels play a key role in many cellular transport phenomena. In their complex cores, these proteins contain precisely arranged arrays of charged amino acids that can efficiently recognize and guide the passing ions. For industrial applications, much simpler nonbiological ionic and molecular channels can be made from zeolites, carbon, silica, and other materials. These channel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Small
سال: 2011
ISSN: 1613-6810
DOI: 10.1002/smll.201190052